Showing posts with label Soil moisture characteristics. Show all posts
Showing posts with label Soil moisture characteristics. Show all posts

Thursday, 8 October 2020

Soil Moisture Terms

In the last article we focused on soil moisture and how it is stored in the soil; adhesion, cohesion and capillarity. But how does this relate to the terms: saturation, field capacity and permanent wilting point?

When soil moisture is stored in the soil it is possible to measure both the amount (content V%) and the tension. The soil tension forms the basis of the following soil moisture parameters: saturation, field capacity and permanent wilting point.

Saturation

A soil is saturated when all pores (micro and macro) are filled with water and no air remains in the soil. At saturation there is free water in the soil profile. Gravity will cause water to drain from macro pores and saturation is therefore a temporary state.

Figure 1: Example of a soil reaching saturation point and the subsequent drainage period. 
This is how it appears on AquaCheck soil moisture plots. 

Field Capacity

When a soil is at field capacity, water is held by adhesion to soil particles and capillarity in micro pores. Field capacity is reached when rapid drainage decreases (Figure 1).

On your Vantage NZ soil moisture plots the field capacity is determined for each sensor depth, then summed to determine the l field capacity for the active root zone. This allows for soil texture changes throughout the profile and provides you with a field capacity unique to the sensor site.


Permanent Wilting Point

Evapotranspiration and drainage (to a much lesser extent) will cause the soil to dry below field capacity. During this process water is removed from all but the smallest micro pores. The permanent wilting point (PWP) varies depending on plant conditions, plant type and soil texture (Figure 2). Nevertheless, the soil water potential at which permanent wilting occurs is considered to be 1500 cba.

Figure 2: Illustration of saturation, field capacity and permanent wilting point for three different soil types. 


Available Water 

Available water (AW) is the amount of water held in the soil between field capacity and wilting point for a defined depth of soil and is expressed as V% or millimetres (mm). 

AW = FC - PWP

Readily Available Water

Not all the available water is equally (readily) available to plants. Water becomes more difficult for plants to extract the closer the water potential comes to permanent wilting point. This is because the reminding water is bound to the soil at increased tension.

Plants need to take up enough water to satisfy their transpirational demand and sustain optimum growth rates. For every kilogram of dry matter (DM) produced, a plant must transpire between 200 – 500 litres of water.[1] For plants to obtain this quantity of water from the soil, water needs to be readily available. Water is said to be readily available when plant growth is not restricted by water availability. Stress point is the point at which plants can no longer extract water at potential rates. On a soil moisture plot this will be demonstrated by a change in water use, i.e. a change in slope of the soil moisture trace (Figure 3).

Figure 3: A change in slope indicates a change in water use. This is how it appears on AquaCheck soil moisture plots. 

As water below the stress point is not readily available and not sufficient to meet potential daily plant demands, yield is lost. Water between the stress point and permanent wilting point is available to plants, but growth is adversely affected.

The key soil moisture parameters described above are essential in irrigation management. At Vantage NZ we strive to clearly determine and label these on your soil moisture plots (Figure 4) so you can make good irrigation management decisions. 

Figure 4: AquaCheck soil moisture plots clear labelling of key soil moisture parameters. 



[1] McLaren, R.G. and Cameron, K. C. (2000). ‘Soil Science’, Sustainable production and environmental protection. Second edition, Oxford University Press. Page 99.


Thursday, 3 September 2020

So, What is Soil Moisture

 

I recently heard a gardening segment on a NZ radio station. The gardening commentator was answering questions and providing advice on ‘how to irrigate your garden’. Her advice was: “Deep watering will encourage the roots to grow into the water table below. This is desirable as it allows the plants to be self-sufficient in accessing water.”

We all have our own perception of water and how it is stored in the soil, but the gardening commentator’s description isn’t an accurate description of what actually happens within the soil or what we are aiming to achieve through irrigation.

There are several processes at play when water is “stored” in the soil: 

·        cohesion - the attraction of water molecules (H2O) to one another it causes water molecules to stick to one another and form water droplets;

·        adhesion – the attraction between water molecules and solid surfaces, in this case soil particles;

·        surface tension – as a result of the cohesive properties of water molecules and their attraction to other water molecules, a water surface behaves like an expandable film; and

·        capillarity – is a combination of cohesion/adhesion and surface tension forces and is the primary force that enables the soil to retain water and to regulate its movement.

In this article we will take a closer look at these terms and and apply the concepts to soil moisture storage.

To demonstrate or understand adhesion and cohesion, pick up a rock or stone, dip it into a pool of water, pull it out again. The water dripping off the rock is free water (lost to gravity, same as free water will be lost to drainage when soil is at saturation point). If you give the rock a shake you will free it of more water - this is the water “stored” by cohesion. The rock is still wet even after the shaking - the water left on the rock is “stored” by adhesion (Figure 1). Water is stored in this way on all soil particle surfaces, whether it be a clay, silt, sand or gravel particle.

Figure 1 Soil moisture is stored on soil particles like a film via adhesion. On this stone adhesion is demonstrated by dipping it into water solution containing blue dye.

Figure 1: Soil moisture is stored on soil particles like a film via adhesion. On this stone adhesion is demonstrated by dipping it into water solution containing blue dye.

Capillarity is the key to storage of water in the soil. It allows water to move upward (and through) soil pores against the force of gravity. The finer-textured the soil (silts and clays) the greater the ability to hold and retain water in the soil in the spaces between particles. The pores between small silt (less than 0.02mm diameter) and tiny clay (less than 0.002mm diameter) particles are known as micropores. Compare these to the larger pore spacing between larger particles, such as sand (0.2-2mm) and stones (larger than 2mm) which are called macropores. Micropores enable greater capillarity rise.

Capillarity can also be simply demonstrated by placing a dry sponge into water – it will progressively wet upwards through the sponge (Figure 2). The finer the sponge material the higher the water will wet the sponge.


Figure 2: Fine sponge placed into a dish with water solution containing blue dye demonstrating capillarity.

When we irrigate, we want the water to have the opportunity for adhesion and capillarity to take place; i.e. “coat” the soil particle surfaces with water and be retained in the micro pores by capillarity this is best achieved through low application rates and by matching the applied depth to soil moisture deficit.

Back to the garden commentator’s recommendation to practice deep watering and aim to push roots into a water table. Very few farmers/growers/irrigators will have a water table shallow enough for roots to reach the water table. When roots explore the soil profile, they form perfect contact with soil particles, via this contact they can extract the moisture stored on particle surfaces. Deep watering is accurate to an extent. We want roots to explore as much soil as possible as this allows them to access more water and nutrients. Roots will only grow in moist soil, so they’ll only explore the soil profile if it’s been wetted. However, it is unusual for the subsoil not to be moist enough for root growth as the plant advances through its growth stages. Irrigation should therefore only be aimed at wetting the soil within the active root zone.

Aquacheck sensors measure soil moisture at several depths. This depth profile is a very useful tool in managing your irrigation. It allows you to see if you are wetting the active root zone and whether the subsoil is wet enough to allow for root growth.

Jane Robb 

Vantage NZ Customer Support Specialist


Monday, 28 January 2019

Maximising the Value of Irrigation


The H2Grow Team are excited to introduce Carolyn Hedley as our guest contributor, it is with great pleasure that we can share with you her valuable expertise. Carolyn is a Soil Scientist with Manaaki Whenua, based in Palmerston North, and lives on a small Kairanga farm with husband, Mike. Carolyn has combined her interests in soil science, proximal soil sensing and precision agriculture with on-farm studies of precision irrigation and soil carbon mapping. She has led several nationally funded projects in irrigation and soil carbon, including current leadership of the MBIE funded programme “Maximising the Value of Irrigation”.

Maximising the Value of Irrigation  -  Carolyn Hedley


Early in the new millennium I found out about EM mapping and in 2004 published a method in the Australian Journal of Soil Research to rapidly EM map soil variability on a basis of soil texture. I realised that EM mapping was a really useful new technology to rapidly survey soil variability. The EM map had picked the difference between a Kairanga silt loam and a Kairanga clay loam, and this had management implications for the farmer because the heavier textured soil would compact sooner when grazed in wet conditions.

I could see great potential in this new technology and so embarked on a PhD in proximal soil sensing and this is when I started to relate the EM map to soil available water holding capacity and realised how useful this could be for irrigation scheduling. But critics commented that irrigation systems cannot irrigate to such a complex pattern (example shown in Figure 1 below). Enter Stu Bradbury and George Ricketts, who had worked with me on some EM mapping projects when they were students at Massey University. There was an engineering solution to this problem – control the sprinkler system on a pivot to irrigate to any pattern – which led to the development of the Precision VRI system. Precision VRI, the world’s first true variable rate irrigation system, turned the heads of the global irrigation giants and as a result Lindsay Corporation acquired the technology development company founded by Stu and George.

Figure 1: Available Water-holding Capacity map derived from an EM map for a 100-ha area irrigated by a VRI linear move irrigation system
There was still work to be done though and a proposal put to the Ministry for Business Innovation and Employment received six years funding in 2013 to further research methods to improve management of irrigated land. Now in its final year, the “Maximising the Value of Irrigation” programme has been able to refine methods to use proximal sensor data to create prescription maps for precision irrigation. It has developed soil and crop sensing methods that can inform in near real time the prescription map, and a prototype scheduling tool has been tested with participating farmers as a smart phone app. The in-field sensor monitoring methods have been used to support Lindsay further refine the software control features for the Precision VRI system, which is remotely managed through the FieldNET platform.


Research into different soil management methods has identified correct tillage and soil surface management methods to store more water in the soil and reduce irrigation requirement and water losses. A spatial framework to run the APSIM model has been created to test the effect of different irrigation scenarios on yield, drainage and water use efficiency. Spatial-APSIM simultaneously runs the model for up to 1,400 grid cells for one irrigation system to compare results of different irrigation scenarios at spatial resolution < 50 m, over several decades.

The MBIE Programme “Maximising the Value of Irrigation” is now working closely with its industry advisory group to ensure that its findings are communicated effectively and to find ways to integrate new tools and support improved management of irrigated land in New Zealand.




Monday, 10 September 2018

The Irrigation, Grazing Game - Digging Deeper

Following on from last week our guest contributor Nicole Mesman digs a little deeper into the findings from her research that looked at the effect of grazing and irrigation on soil porosity.

Soil natural capital and soil health may seem like unnecessary concepts, names that you already know the meaning of without having to learn them. However I will outline them briefly and how they relate to my findings so that you are, in turn, able to relate to them if you come across them in environmental plans, legislation or elsewhere in the future.

Soils are referred to as a stock of properties or natural capital which yield a flow of valuable ecosystem goods or services into the future. Both soil health/ quality and natural capital are similar in that they use soil indicators and parameters to determine the state or function of a soil system. However soil natural capital provides a more holistic analysis of the resource as it takes into account not only the state of the soil itself (through soil indicators) but also the effect of this state on the products and services that soils provide and the human needs that are catered for by soils.

In the soil natural capital framework macroporosity is identified as the key physical attribute. This is because macroporosity determines: water flow, solute transport and drainage through soil. As a result macroporosity influences ecosystem services such as flood mitigation and filtering of nutrients. Macroporosity and associated soil physical properties provide important services and it is important for land managers to be aware of the potential to change these properties and the ecosystem services they provide.

Research has been carried out to determine the effect of land use practices on other soil physical properties such as bulk density, aggregate stability, soil carbon and water holding capacity however macroporosity remains the main indicator of soil physical natural capital and health because of its sensitivity to intensification.

My research found that on average for the 0-30 cm increment macroporosity was significantly lower on the Dairy site (9 ± 1%) than both the Sheep farm (19 ± 1%) and the Control site (15 ± 1%). This suggests that intensification is having a significant effect on the Dairy site. Furthermore on the Dairy site the 0-10 cm and 10-20 cm depth increments both have values for macroporosity < 10%. Other researchers have proposed that macroporosity values of > 10% are needed to maintain pasture production near optimum.

Target ranges for macroporosity are given in Table 1 as part of the National Soil Quality Indicator Programme. Here, for soils under pasture, macroporosity values < 8% are considered low and could restrict pasture growth. Macroporosity for the 10-20 cm depth increment on the Dairy site was 7 ± 1%, a level where less than optimum production could be expected. Results from an AgResearch trial found similar values for and changes of macroporosity with stocking intensity.

Table 1 – target values for macroporosity for pasture, cropping & horticulture and forestry
I did not find any changes in water holding capacity within the plant available range with increasing land use intensification. This result in itself was interesting as it shows that intensifying land use practices did not have a measureable impact on the readily available water (RAW, that available to plants) of the soil. In comparison other studies have found that there is a significant decrease in RAW with irrigation and increased compaction.

Finally my study did find that there was an increase in small micropores holding water at suctions too great for the plant to overcome. These findings all highlight the importance of on farm soil testing to determine the RAW of the specific soil textures and under different land uses to increase management efficiency.

Bulk density values were found to be significantly higher on the Dairy site (1.40 ± 0.02 g cm-3) than both the Sheep farm (1.26 gcm-3± 0.02) and the Control site (1.31 ± 0.02 g cm-3), indicating increased compaction on the DF in agreement with macroporosity values. Bulk density is not as sensitive an indicator of compaction as macroporosity and this can be seen by the large target range 0.7–1.4 gcm-3 that has been identified for Pallic soils (Table 2). Therefore it is not recommended as an indicator for determining the effect of land use intensification on soils.
Table 2 – target ranges for bulk density are large indicating that this is not as sensitive an indicator as macroporosity for determining the effect of land use intensification on soils.
Landcare Research has developed a tool which can be used by everyone to determine the quality of their soil based on a number of indicators.


The tool allows you to measure your soil against current understanding of optimal values for: Macroporosity, bulk density, Total N, Total C, Mineraliseable N, pH and Olsen P
It will tell you about the effect each indicator has on soil quality alongside some general management practices that can be used to improve your soil.

In addition to thinking about the effect of these indicators on your soil quality I encourage you to take a step back and also think about the long term effect of the state of these indicators/ properties on your farm’s functions and the importance of each of these functions to your profitability. 

Thanks to Nicole Mesman (BSc (Hons) Soil Science) for the content of this post!

Wednesday, 29 November 2017

Useful Farming Technology Apps and Websites

Technology – there are those who embrace it with open arms, and then there are those who don’t… but love it or hate it, there are some very good pieces of technology that could be extremely useful for farmers wanting help with environmental compliance, or even just some advice and support.  And, with the increased need to be accountable and “doing things right”, these are some of the technology tools and resources that I have come across in my day job that I thought were worth a mention. 

Riparian Planner

This is an online tool developed by DairyNZ.  It is a step by step process to design, budget and prioritise water management on farm.  It is extremely user friendly, and a good starting point if you are considering riparian planting on your farm.  This is a useful tool for all types of farms.  The web page address is as follows:

https://riparian-planner.dairynz.co.nz/plans

Check-It Bucket Test app

This is available for both Apple and Android devices via the App Store or Google Play Store.  The app walks you through an annual performance assessment of your irrigation system, provides the results instantly to your device and e-mails a final report to you.  This is a great way to check whether your irrigation system is performing as you expect.  Is water being applied evenly?  Are you putting on what your control box says you are putting on?  You do need to own a few buckets to carry out the test, but the insight into your irrigation systems performance is well worth the trip to town to invest in the buckets.  Some irrigation schemes do have buckets that you can borrow for this purpose, so ask around too. 

Soil Moisture Monitoring

Soil moisture monitoring equipment is by no means new technology, but the amount of it now on the market has increased substantially and understanding what is the right tool for you can be difficult to work out. You must choose the right equipment for your soil, land use activities and irrigation system type, and then locate, install and calibrate (if necessary) it correctly. Accessing, managing and understanding the data is also important. If soil moisture monitoring is to be successful, each of these aspects has to be carefully worked through.  Irrigation New Zealand has developed a resource book for this very topic and it can be found here:


Online GIS systems

For those of us here in Canterbury, Canterbury Maps is an amazing resource.  Not only can you create farm maps, but it can be used to search for information about any property, consent information, bore information, and any other relevant information that you may need such as nutrient allocation zones, the location of wetlands or Runanga sensitive areas.  This can be found here:


Other councils do have online GIS systems, but none are quite to the level of Canterbury Maps.  But check out what your local council does have.  Understanding what is of interest and/or significance on and around your farm is key these days. 
  
FDE Calculator app

Dairy NZ has developed an app to allow you to work out how to manage your Farm Dairy Effluent (FDE).  You can easily calculate nutrient loadings and application rates, therefore enabling application of effluent with greater precision.  It can be used for diluted dairy effluent as well as for slurry tankers and muck spreaders.  This is also available for both Apple and Android devices via the App Store or Google Play Store.

I hope you find this information useful, and please let me know of any others that you think might be worth checking out.


 By Keri Johnston, Irricon Resource Solutions
Phone 0272 202 425 or email keri@irricon.co.nz
www.irricon.co.nz


Monday, 18 September 2017

Tips, Tools and Technology for Efficient Farming - Part 1

During winter the H2Grow team ran a series of workshops throughout the South Island titled ‘Tips, Tools and Technology for Efficient Farming’. These workshops were very well attended and the team thoroughly enjoyed meeting everyone and the wide-ranging discussions that were had.

For those that were unable to attend we do not want you to miss out, so over the next few blog posts we will be posting notes of the key messages from each of the presentations. These are only condensed versions of the main points so if you would like further information or have any questions then please do feel free to contact the contributors directly by either clicking on the photo widgets to the right of this blog, or use the links provided.

The first set of presentation notes briefly cover the following topics:
  1. Why should we care about farming efficiently?
    • Nutrient management - why are we doing this?
    • Irrigation and nutrient management - how to they fit together?
  2. Soil moisture and water use efficiency
You will see there are two copies of the notes, one for Canterbury and the other for Otago as the notes relating to the regulations between these two areas differs.


Both topics were presented by Irricon Resource Solutions, so for more information please fee free to contact Keri Johnston or a member of the Irricon Team.



Thursday, 15 June 2017

'Tips, Tools & Technology for Efficient Farming' - Workshop Series

Do you want to improve the nutrient and irrigation management on your farm but are not sure where to start? Come along to a free 'Tips, Tools & Technology for Efficient Farming' workshop jointly hosted by Lindsay NZ, Agri Optics New Zealand Ltd and Irricon Resource Solutions.

Over the course of the workshop we'll cover off a range of topics from nutrient management, irrigation management and hardware, precision agriculture and how these all tie in with farm environment plans for efficient farming.



Please use this link to register - Register me for a workshop please!

We look forward to seeing you there

Monday, 12 December 2016

Know your Soil Better than your Bank Manager - Continued

Identifying Soil Texture


Soils are made up of particles of different sizes, the largest sand, followed by silt, to the smallest clays. Together these make up the soil’s texture. Soil texture has a direct impact on soil physical properties: porosity, water holding capacity and bulk density. Furthermore soil clay content determines soil chemical properties and the soil’s ability to hold onto nutrients.

This blog will discuss hands on ways to determine your soil texture, how texture relates to key soil physical properties and the role of clays in the soil. You can determine your soil texture at the same time as you carry out the VSA described in the previous blog post and together these practices will improve the quality of your information.

The change in a soil with depth, the cross section down through the soil, is referred to as the soil profile. It normally consists of a number of soil horizons (layers) each with different characteristics (texture and/or stone content). The picture below shows a soil profile with six distinct soil horizons. When scheduling irrigation you need to know information about the hydraulic (water) properties of each soil horizon that plant roots occupy within the soil profile to determine the amount of water available to the plant. This determines how frequently you need to irrigate (return period) and the maximum irrigation you can apply in one application (irrigation depth).

Example soil profile
Soil texture is an important characteristic because it gives a good indication of other soil properties such as water storage, drainage and nutrient supply. It is a stable soil property and is not likely to change with normal soil management. Soil texture can be estimated in the field by some practical tests involving the feel of the soil and these are outlined below. To determine the textures and get an idea for the ability of your soil to hold water it is beneficial to dig a pit and expose an open face on the soil profile so you can determine the different horizons visible down the profile. You should identify the soil texture of each of the horizons that plant roots are found to grow in, or down to about 60 cm.

Hands on method to determine your soil texture.
Found in the joint Irrigation NZ and Plant and Food resource - Click here to visit the webpage.

The graph below shows typical soil water holding capacities (WHC) for different soil textures in % or mm of water per 100 mm of soil depth. It also shows their typical permanent wilting points (WP) and field capacities (FC). The relationship between WHC, porosity and bulk density is straightforward. Sand has the largest particles, the lowest WHC and therefore the lowest porosity. This translates into the highest bulk density because less space is occupied by air. As shown by the WHC of silt and clay below, silt has a higher porosity and lower bulk density which is very similar to clay soils although clays tend to have the highest porosity. This is because clay is made up of lots of small particles which create lots of air spaces between them. Therefore clay also has the lowest values for bulk density.

Relationship between soil texture and soil water content.
Found in the joint Irrigation NZ and Plant and Food resource.
Another role of clay in the soil is in terms of nutrient management. The structure of clay's means that they tend to become negatively charged around the surface. This means that positively charged nutrients are attracted to the surface of the clay and, depending on the conditions, can move between this surface and the soil solution from where they can be taken up by plants. It is helpful to have an idea of how much clay your soil has because this will determine its ability to store positively charged nutrients such as potassium, calcium, magnesium, sodium and resist changes in pH. Clay also holds phosphorus by allowing it to be adsorbed into the clay structure; some clay's allow this more than others. This is important to note because when phosphate is adsorbed it is less likely to become available to the plant and more phosphate will need to be applied to the soil to avoid deficiency in plants.

For more information on soil texture and water holding capacity you will find a great resource by following this link.

Once you have an idea of your soil texture and water holding capacity mapping tools can be used to get an idea of the representation of this soil type across your whole farm. Simple mapping such as Google Earth images (see the Ground Truthing your Soil Variability blog) and S-Map (which will be discussed in a future blog post) are helpful resources. It is important to be aware that these are tools to increase your understanding but to provide the detail required for efficient farm management tools such as EM mapping and determining exact water holding capacity are greatly beneficial.

Blog post written by Nicole Mesman - BSc (Hons) Soil Science.

Friday, 9 December 2016

Know your Soil Better than your Bank Manager

A Practical Guide to Assessing your Soil Quality


The soil’s physical properties are vital to the ecological and economic sustainability of land. They control the movement of water and air through the soil, and the ease with which roots penetrate the soil. Damage to the soil can change these properties and reduce plant growth, regardless of nutrient status. Decline in soil physical properties takes considerable expense and many years to correct, and can increase the risk of soil erosion by water or wind.

The primary functions of the soil are to provide plants with air, water, nutrients and a rooting medium for growth and physical support (image sourced from the Landcare Research website) 
The Visual Soil Assessment (VSA) was developed by Landcare Research to give cropping and pastoral farmers a straight forward and time efficient checklist to use in the field to assess the state of their soil, primarily the physical soil quality.

The VSA can be found online here -> Visual Soil Assessment (VSA)

The VSA aims to help farmers identify changes occurring to soil physical properties so that they can assess the effect that these changes will have on their soil quality and the sustainability of their land management and long term profit.

Pictures in the VSA guide can be helpful when carrying out the assessment in the field (image sourced from: VSA Volume 1).
The assessment can be carried out quickly, reliably and cheaply with little equipment, training or technical skills. The scorecard below is to record those visual soil indicators used to assess soil quality. There is a similar scorecard for recording plant indicators. You are then able to compare the two sets of indicators to see if you have similar scores for both and if not why. For instance, is damage to soil quality not being seen in crops yet or are crops struggling to recover from previous soil damage?

VSA Scorecard (image sourced from: VSA Volume 1)
Below each indicator is a section in the online VSA booklet to refer to for assistance. Pictures are included so you can compare what you are viewing and refer to examples. You will need a spade, the score card, a surface to drop soil onto for a shatter test and a bin to contain soil. Each indicator is given a weighting and at the bottom of the scorecard you add the scores for the various indicators. Values falling within certain ranges are deemed “poor”, “moderate” and “good” quality. If your quality is poor or moderate it is suggested that you refer to Volume 2, also easily accessible from Landcare Research online. This volume contains tips on how to improve your soil quality or maintain it if it is already good.

Tips include:

  • Cultivating at the correct moisture levels to avoid smearing of soil, formation of cultivation pans and reduced infiltration when the soils are too wet. 
    (image sourced from: VSA Volume 2)
  • Use a sub-soiler to break cultivation pans and increase root growth
  • Maintain soil organic matter levels to ensure porosity, drainage and root growth.
    (image sourced from: VSA Volume 2)

By utilising these resources, you will gain a better appreciation for the state of your soil and will be able to identify when changes are occurring and why. The VSA is a simple tool and when used regularly will help with building a picture of soil quality. There are a range of other resources that can continue from the VSA, further your knowledge of your soil and assist with management. SINDI, another resource for determining soil quality, will be discussed in a future blog post along with hands on ways to identify your soil type and S-Map, how its geomorphological (land formation) history can be used to assist your farming.

The blog post you have just read was written by Nicole Mesman - BSc (Hons) Soil Science.

Wednesday, 7 December 2016

Soil Moisture 101

Soils are made up of mineral matter, organic matter, water and air. The space between the soil particles are referred to as pores, air and water occupy these pores. Macro pores allow water to filter through the soil and then drain out the bottom. Micro pores store water that is available for plants to grow.

Soil texture is an important characteristic that influences water holding capacity, drainage characteristics and water infiltration rate. The finer the texture of the soil the greater volume of micro pores and therefore greater water holding capacity compared to coarser textured soils.

The total amount of water that a soil can store is referred to as the water holding capacity (WHC) of the soil. Coarse textured soils such as sandy and gravelly soils have a low WHC while silts and clays retain more water therefore have a higher WHC. WHC is usually expressed in miilimetres (similarly to rainfall) held per depth of soil e.g. Xmm/100mm.

Here are some common terms that you are likely to come across regularly on H2Grow and resources relating to soil moisture and irrigation scheduling:

Saturation – When all the macro and micro pores are full of water. If more water is added to a saturated soil it will either drain out the bottom, pond or run-off.

Field Capacity – Macro pores are full of air, micro pores are full of water. Silt and clay soils generally reach field capacity after 2-3 days of drainage from saturation, sandy and gravelly soils much faster. Field capacity may also be referred to as full point.

Stress Point – At this point the plant has to work to harvest the water from the soil, therefore plant growth is slowed and yield potential is reduced. The plant will survive beyond this point but will become increasingly stressed. Stress point is related to crop type, rooting depth and soil type. Stress point may also be referred to as trigger point or refill point.

Wilting Point – At this point although there is still water held in the soil the plant is not able to access it as it is held to tightly (hydroscopic water). The plant will therefore permanently wilt and die. Wilting point may also be referred to as permanent wilting point.

Water Holding Capacity (WHC) – Is a measure of the water that is extractable by plants. This can be calculated by taking the difference between the soil water at field capacity and at permanent wilting point. Water holding capacity may also be referred to as total available water or available water.

Readily Available Water (RAW) – Is a measure of the amount of water in the soil that supports optimum plant growth. This can be calculated by taking the difference between field capacity and stress point. As a general rule of thumb half of the WHC is readily available to the plant, therefore RAW = 0.5 x WHC.

Soil Infiltration Rate – Is the speed at which applied water can enter the soil. It is described as the millimetres depth of water infiltrated per hour (mm/hr).

Figure 1 below may help to illustrate the difference between saturation, field capacity and wilting point.

Figure 1
While this theory is all very useful, nothing beats seeing like in the real world. So I’d encourage you the next time you’re doing a paddock walk to take a spade with you and locate what appears to be the driest and the wettest spots in a paddock. Dig a hole in these two spots and compare the soil type/texture, the depth of topsoil, depth of the roots and other obvious visual differences. You will see posts over the next month that explain how to carry out a visual soil assessment and then how to apply this in your irrigation scheduling.

Posted by Sarah Elliot from Lindsay NZ

Wednesday, 5 October 2016

Improving Irrigation Efficiency for Only $50 cont.

Here is the much anticipated second installment from the Improving Irrigation Efficiency field day run by The Waihao Wainono Group and Morven Glenavy Irrigation. Dr Anthony Davoren, renowned Irrigation Consultant with Hydroservices, shares how drainage through the soil profile can be measured. With this key piece of information we can improve our irrigation management, and know when to turn the irrigator on (or off) to ensure all irrigation that is being applied is going to benefit the grass or crops we are growing.


Thank you to Dr Anthony Davoren, Waihao Wainono Group and Morven Glenavy Irrigation.

Tuesday, 2 August 2016

Reduce the Cost of Nutrient Loss with Precision Ag (Part 2 of 3)

In the last blog post we looked at nutrients and how Precision Ag can help with your Farm Environment Plans (FEP). This blog post looks at how an EM survey can help with identifying your soil types for your Farm Environment Plan.

An EM survey illustrates the relative variability in soil characteristics including soil texture that can be potentially related to water holding properties within that soil profile, this can help you manage water application through the use of variable rate irrigation technology. When combined with the use of soil moisture probes you have the data and technology you need to be able to retain nutrients within the soil profile itself. 

EM surveys can be ground-truthed to find the correlation between the EM value and water holding capacity (WHC).  From that you can create a WHC map and site-specifically place moisture probes to monitor the soil moisture levels within each identified zone.

Ground-truthing sites are identified within each zone (shown on the left). The graph illustrates the correlation between the EM values and WHC in the top 55cm of the soil profile for this paddock.
In the image above we can see the correlation between EM value and WHC at this site has an R2 of 0.97 (R2 quantifies goodness of fit. It is a fraction between 0.0 and 1.0, higher values indicate that the model fits the data better). We can then use the equation in VA Gateway, one of the PA software platforms supported by Agri Optics, to create a water holding capacity (WHC) map out of the EM values map.

The EM map converted into a Water Holding Capacity map
This water holding capacity map can then be used in conjunction with soil moisture probes and VRI to maintain the moisture levels between field capacity and critical moisture. This not only reduces any potential yield loss from moisture stress but it also ensures that you aren't saturating the soil profile, and therefore avoid leaching nutrients out of the root zone.

It’s all about balancing crop requirements, real-time moisture levels, rainfall (when it comes!) and application rates with irrigation return times as precisely as possible to keep everything at an optimum level.

An AquaCheck soil moisture probe graph showing soil moisture levels and how they are affected my irrigation or rain events on this soil profile.
As can be seen above by keeping the moisture between upper and lower readily available water levels you ensure yield isn’t compromised and eliminate leaching. The rooting depth used for the probe profile can be tailored to the crops specific needs on the moisture monitoring website.

Next time we will discuss how the EM maps and topography data can help you with your FEP.

Chris Smith

Agri Optics NZ Ltd

Wednesday, 9 March 2016

Workshop: Technology to Reduce N Leaching

If you're under pressure to mitigate N leaching and improve efficiency and profitability on farm - then the PAANZ Technology to Reduce N Leaching is for you!



Note registrations now close on March 18th. 

Friday, 21 August 2015

A guide to S-Map

What is S-Map?
S-Map is a map containing information of the soils across the country. It is being developed by Landcare Research and information is continually being added to it. The project was started to collaborate and update information on New Zealand’s soils into one easily accessible map of the whole country with different layers of information for different applications and to support land management at different scales.

Anyone can access the information freely. Mapping is carried out by Landcare scientists who either use old soil maps or go to the area and undertake traditional soil surveying. This is where soil core samples are taken to determine the soil type and this information, alongside the history of the area, is used to present what they think the pattern of soils will look like. The most detailed information available is currently on the lowlands while the uplands of the country are being mapped using digital modelling based on the soils having similar characteristics to other known soil types.

How to use it
In the previous blog (identifying soil textures) you see how the content of sand, silt and clay determines soil physical properties such as WHC, porosity and bulk density and how there are different horizons in a soil profile with different quantities of these three particle sizes. S-Map also uses soil horizons to determine soil characteristics.


You can search for your location on S-Map and select to see polygon layers to view the soil types present on your farm as shown below for Methven, Canterbury.

S-Map Online is freely accessible for anyone; smap.landcareresearch.co.nz
You can then select the ‘Soil information’ tab at the top of the screen and click on a point on the map. S-Map will show you the percentage of each soil type present around this point and you can select to view the factsheet of the dominant soil type (and the other soil types present). In the figure below the Greenvale farm near Methven is shown by S-Map to have three dominant soil types: 50% is a shallow, well drained Eyre, 25% is a shallow Darnley and the final 25% is a moderately deep Mayfield.



The soil will have been given a series of names using the New Zealand Soil Classification System however don’t worry about this too much, the information contained further down in the factsheet has more practical applications. The fact sheet tells you:
  • ·         How stony the soil is which relates to its drainage class
  • ·         The amount of water expected to be held at different depth increments
  • ·         The clay content
  • ·         Potential rooting depth
  • ·         Soil phosphorus retention
  • ·         Water management such as the potential for waterlogging and drought
  • ·         Nutrient management such as nitrogen and phosphorus leaching vulnerability. 


Page 1 of an S-Map report for an Eyre soil, downloaded from smap.landcareresearch.co.nz
You can also select different layers to view on the map, on the left hand side of the screen: soil drainage, depth to hard soil/ gravel/ rock and soil moisture. The map will then update using the colour scheme from the legend for this layer which is shown on the right hand side of the screen. The figure below shows that for the Greenvale farm the soil drainage depth layer has been selected and on the right hand side the legend explains what each drainage class means.




Positives
S-Map brings all information on NZ soils into one database that can be easily accessed and used by all land users and interested parties. It is the largest national resources on soils that NZ has and it contains a range of information that is relevant and useful for all scales of management. However there are also aspects to S-Map that limit its usefulness, especially to farmers.

Drawbacks
According to S-Map the Greenvale farm, shown in the S-Map figures above is a mix of mainly three soil types. However an Electromagnetic map carried out alongside soil sampling showed that there was, in fact, a much more complex pattern of soils present on the farm. The picture below and top is the Electromagnetic map of the property and the different colours represent different textures while the picture below and bottom uses the patterns from the EM map alongside soil sampling to identify the pattern of soil types (families) on the property. 


Top, EM map by Agri Optics Ltd. Bottom map of soil types developed from soil sampling.


These maps provide a substantial amount more information than the map of the farm from S-Map (discussed above). The soil information used by Overseer to determine nitrate leaching is supplied by S-Map and this can result in inaccuracies in N leaching figures when S-Map believes the soil pattern on a farm is more simple or different than it actually is. Furthermore using soil information from S-Map for irrigation scheduling could mean over or under irrigating areas which can decrease yields as well as creating inefficiencies in water and power use.